Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 996
Filtrar
1.
Food Chem ; 447: 138909, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38489879

RESUMO

The purpose of this review was to investigate the current knowledge about aflatoxin B1 (AFB1) and ochratoxin A (OTA) toxicity and the possible beneficial role of bioactive compounds by using in vitro and in vivo models. Although AFB1 and OTA were tested in a similar percentage, the majority of studies focused on nephrotoxicity, hepatotoxicity, immune toxicity and neurotoxicity in which oxidative stress, inflammation, structural damage and apoptosis were the main mechanisms of action reported. Conversely, several biological compounds were assayed in order to modulate mycotoxins damage mainly in the liver, brain, kidney and immune system. Among them, pumpkin, curcumin and fermented whey were the most employed. Although a clear progress has been made by using in vivo models, further research is needed to assess not only the toxicity of multiple mycotoxins contamination but also the effect of functional compounds mixture, thereby reproducing more realistic situations for human health risk assessment.


Assuntos
Micotoxinas , Ocratoxinas , Humanos , Aflatoxina B1/toxicidade , Ocratoxinas/toxicidade , Micotoxinas/toxicidade , Fígado
2.
Toxicology ; 503: 153765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38432407

RESUMO

Ochratoxin A (OTA) is a mycotoxin spread worldwide contaminating several food and feed commodities and rising concerns for humans and animals. OTA toxicity has been thoroughly assessed over the last 60 years revealing a variety of adverse effects, including nephrotoxicity, hepatotoxicity and possible carcinogenicity. However, the underpinning mechanisms of action have yet to be completely displayed and understood. In this framework, we applied a virtual pipeline based on molecular docking, dynamics and umbrella simulations to display new OTA potential targets. The results collected consistently identified OGFOD1, a key player in protein translation, as possibly inhibited by OTA and its 2'R diastereomer. This is consistent with the current knowledge of OTA's molecular toxicology and may fill some gaps from a mechanistic standpoint. This could pave the way for further dedicated analysis focusing their attention on the OTA-OGFOD1 interaction, expanding the current understanding of OTA toxicity at a molecular level.


Assuntos
Micotoxinas , Ocratoxinas , Humanos , Animais , Simulação de Acoplamento Molecular , Ocratoxinas/toxicidade , Contaminação de Alimentos , Proteínas de Transporte , Proteínas Nucleares/metabolismo
3.
Food Funct ; 15(8): 3980-3992, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38482731

RESUMO

Ochratoxin A (OTA), commonly found in various foods, significantly impacts the health of humans and animals, especially their kidneys. Our study explores OTA's effects on the gut microbiota and kidney damage while examining how postbiotics offer protection. Using metagenomic sequencing, we observed that OTA increased the potential gut pathogens such as Alistipes, elevating detrimental metabolites and inflammation. Also, OTA inhibited the Nrf2/HO-1 pathway, reducing kidney ROS elimination and leading to cellular ferroptosis and subsequent kidney damage. Postbiotics mitigate OTA's effects by downregulating the abundance of the assimilatory sulfate reduction IV pathway and virulence factors associated with iron uptake and relieving the inhibition of OTA on Nrf2/HO-1, restoring ROS-clearing capabilities and thereby alleviating chronic OTA-induced kidney damage. Understanding the OTA-gut-kidney link provides new approaches for preventing kidney damage, with postbiotics showing promise as a preventive treatment.


Assuntos
Microbioma Gastrointestinal , Rim , Ocratoxinas , Ocratoxinas/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos , Masculino , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Espécies Reativas de Oxigênio/metabolismo
4.
Appl Microbiol Biotechnol ; 108(1): 230, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393350

RESUMO

The presence of ochratoxin A (OTA) in food and feed represents a serious concern since it raises severe health implications. Bacterial strains of the Acinetobacter genus hydrolyse the amide bond of OTA yielding non-toxic OTα and L-ß-phenylalanine; in particular, the carboxypeptidase PJ15_1540 from Acinetobacter sp. neg1 has been identified as an OTA-degrading enzyme. Here, we describe the ability to transform OTA of cell-free protein extracts from Acinetobacter tandoii DSM 14970 T, a strain isolated from sludge plants, and also report on the finding of a new and promiscuous α/ß hydrolase (ABH), with close homologs highly distributed within the Acinetobacter genus. ABH from A. tandoii (AtABH) exhibited amidase activity against OTA and OTB mycotoxins, as well as against several carboxypeptidase substrates. The predicted structure of AtABH reveals an α/ß hydrolase core composed of a parallel, six-stranded ß-sheet, with a large cap domain similar to the marine esterase EprEst. Further biochemical analyses of AtABH reveal that it is an efficient esterase with a similar specificity profile as EprEst. Molecular docking studies rendered a consistent OTA-binding mode. We proposed a potential procedure for preparing new OTA-degrading enzymes starting from promiscuous α/ß hydrolases based on our results. KEY POINTS: • AtABH is a promiscuous αß hydrolase with both esterase and amidohydrolase activities • AtABH hydrolyses the amide bond of ochratoxin A rendering nontoxic OTα • Promiscuous αß hydrolases are a possible source of new OTA-degrading enzymes.


Assuntos
Acinetobacter , Micotoxinas , Ocratoxinas , Micotoxinas/metabolismo , Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Ocratoxinas/metabolismo , Ocratoxinas/toxicidade , Acinetobacter/metabolismo , Carboxipeptidases/metabolismo , Esterases/metabolismo , Amidas/metabolismo
5.
Food Chem Toxicol ; 185: 114486, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301995

RESUMO

Ochratoxin A (OTA) is a renal carcinogen in rats, and repeated administration induces karyomegaly in proximal tubular epithelial cells (PTECs) of the outer stripe of the outer medulla (OSOM) before inducing proliferative lesions. To investigate whether OTA induces micronuclei (MN) in PTECs, we performed an in vitro MN assay using rat renal NRK-52E PTECs after treatment for ≤21 days, and an in vivo OSOM MN assay in rats treated with OTA, other renal carcinogens, or non-carcinogenic renal toxicants for 4 or 13 weeks. The in vitro assay revealed an increased frequency of micronucleated cells from the acceptable dose level for cell viability, even after 21 days of treatment. The in vivo assay also revealed a dose- and treatment period-dependent increase in PTECs with γ-H2AX+ MN. OTA-specific gene expression profiling by OSOM RNA sequencing after week 13 revealed the altered expression of genes related to microtubule-kinetochore binding, the kinesin superfamily, centriole assembly, DNA damage repair, and cell cycle regulation. MN formation was also observed with other renal carcinogens that induce karyomegaly similarly to OTA. These results imply that γ-H2AX+ MN formation by OTA treatment is related to the induction of chromosomal instability accompanying karyomegaly formation before proliferative lesions form, providing a new insight into the carcinogenic mechanism that may be relevant to humans.


Assuntos
Ocratoxinas , Humanos , Ratos , Animais , Ocratoxinas/toxicidade , Carcinógenos , Células Epiteliais , Instabilidade Cromossômica
6.
Biosens Bioelectron ; 248: 115995, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176255

RESUMO

To measure toxins using immunoassays, hazardous toxin standards need to be added for quantification. To solve this problem, we propose to use aptamers as competitors to replace toxin standards. In this work, aptamers specific for ochratoxin A (OTA) nanobodies were selected using a DNA library containing a 36 nucleotide random region. The obtained sequences were highly aligned and the best competitor was identified to be a sequence named apt2-OT based on an indirect competitive enzyme-linked immunosorbent assay (ELISA). The Kd of apt2-OT was measured to be 2.86 µM using local surface plasmon resonance spectroscopy. The optimal apt2-OT was identified to substitute the OTA standard with a concentration needed for 50% inhibition of binding (IC50) of 3.26 µM based on a nontoxic direct competitive ELISA. The equivalence relationship between the aptamer and OTA was established in a flour sample, and a recovery experiment was performed. The detection limit for this method was 0.23 ng/mL, with a linear range from 0.25 to 10.50 ng/mL. The recovery rate was 97.5%-115.5%. This study provides a low-cost, rapid and environmentally friendly alternative to the development of immunoassays for toxins.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ocratoxinas , Anticorpos de Domínio Único , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Ocratoxinas/toxicidade , Ocratoxinas/análise , Imunoensaio , Limite de Detecção
7.
Toxicol Lett ; 393: 24-32, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244709

RESUMO

Mycotoxins such as gliotoxin (GTX) and ochratoxin A (OTA) are secondary metabolites of Aspergillus and Penicillum found in food and feed. Both mycotoxins have shown to exert a detrimental effect on neuronal activity. The following study was carried out to elucidate the mechanisms by which GTX and OTA exert their toxicity. Non-differentiated SH-SY5Y neuronal-like cells were treated with GTX, OTA and their combinations to assess their cytotoxic effect using the MTT assay during 24, 48 and 72 h of exposure. Based on the results of the cytotoxic assays, cell cycle proliferation and immunological mediators were measured by determining the production of IL-6 and TNF-α using flow cytometry and ELISA, respectively. The IC50 values obtained were 1.24 and 1.35 µM when SH-SY5Y cells were treated with GTX at 48 h and 72 h, respectively. IC50 values of 8.25, 5.49 and 4.5 µM were obtained for OTA treatment at 24 h, 48 h and 72 h, respectively. The SubG0 phase increased in both treatments at 24 and 48 h. On the other hand, IL-6 and TNF-α production was increased in all mycotoxin treatments studied and was more pronounced for [GTX + OTA] after 48 h exposure. The additive and synergistic effect observed by the isobologram analysis between GTX and OTA resulted to a higher cytotoxicity which can be explained by the increased production of IL-6 and TNF-α inflammatory mediators that play an important role in the toxicity mechanism of these mycotoxins.


Assuntos
Gliotoxina , Micotoxinas , Neuroblastoma , Ocratoxinas , Humanos , Gliotoxina/toxicidade , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6 , Ocratoxinas/toxicidade , Micotoxinas/toxicidade , Ciclo Celular
8.
Environ Sci Pollut Res Int ; 31(4): 5473-5483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38114706

RESUMO

Ochratoxin A (OTA) is a well-known mycotoxin that adversely affects different human cells. Inhalational exposure to OTA and subsequent pulmonary diseases have been previously reported, yet its potential carcinogenicity and underlying molecular mechanisms have not been fully elucidated. This study aimed to evaluate the OTA-induced cytotoxicity and the epigenetic changes underlying its potential carcinogenicity in fetal lung fibroblast (WI-38) cells. OTA cytotoxicity was assessed by MTT assay; RT-qPCR was used to determine the expression of BAX, BCL-2, TP53, and miR-155, while ELISA was used for measuring 5-methyl cytosine percentage to assess global DNA methylation in OTA-treated versus control cells. WI-38 cells demonstrated sensitivity to OTA with IC50 at 22.38 µM. Though BAX and Bcl-2 were downregulated, with low BAX/BCL-2 ratio, and TP53 was upregulated, their fold changes showed decline trend with increasing OTA concentration. A significant dose-dependent miR-155 upregulation was observed, with dynamic time-related decline. Using subtoxic OTA concentrations, a significant global DNA hypermethylation with significant dose-dependent and dynamic alterations was identified. Global DNA hypermethylation and miR-155 upregulation are epigenetic mechanisms that mediate OTA toxicity on WI-38 cells. BAX downregulation, reduced BAX/BCL-2 ratio together with miR-155 upregulation indicated either the inhibition of TP53-dependent apoptosis or a tissue specific response to OTA exposure. The aforementioned OTA-induced variations present a new molecular evidence of OTA cytotoxicity and possible carcinogenicity in lung fibroblast cells.


Assuntos
Epigênese Genética , MicroRNAs , Ocratoxinas , Humanos , Proteína X Associada a bcl-2 , DNA , Metilação de DNA , Fibroblastos , Pulmão , Ocratoxinas/toxicidade , Proteínas Proto-Oncogênicas c-bcl-2
9.
Toxicon ; 236: 107327, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863437

RESUMO

Atrazine, a herbicide, is used for eradication of broad-leaved herbs in corn crop; and ochratoxins, particularly ochratoxin A (OTA), are major pollutants of poultry diet. Existence of both of these hazardous chemicals as residues is obvious as elucidated by various epidemiological findings. The present study was designed to investigate toxicopathological, serum biochemical and immunological alterations incurred by atrazine alone and/or, in combination with OTA in broilers. For this purpose, one-day old broiler chicks (n = 180) were purchased from a local hatching unit and were fed two levels of atrazine (50 and 150 mg/kg) and one level of OTA (100 µg/kg) in different combinations. Results of this experiment showed a significant reduction in feed intake, body weight gain, relative organ weights, serum total protein, albumin and globulin while there was a significant increase in urea and creatinine levels, decreased antibody response to sheep red blood cells, reduced lymphoproliferative response and phagocytic capacity in groups given OTA and atrazine individually in feed and these effects became more pronounced when atrazine was given in combination with OTA suggesting synergistic effects of both toxicants for each other.


Assuntos
Atrazina , Ocratoxinas , Animais , Ovinos , Ocratoxinas/toxicidade , Galinhas , Atrazina/toxicidade , Ração Animal/análise
10.
Toxins (Basel) ; 15(9)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37755991

RESUMO

Ochratoxins are the secondary metabolites of Penicillium and Aspergillus, among which ochratoxin A (OTA) is the most toxic molecule. OTA is widely found in food and agricultural products. Due to its severe nephrotoxicity, immunotoxicity, neurotoxicity, and teratogenic mutagenesis, it is essential to develop effective, economical, and environmentally friendly methods for OTA decontamination and detoxification. This review mainly summarizes the application of technology in OTA prevention, removal, and detoxification from physical, chemical, and biological aspects, depending on the properties of OTA, and describes the advantages and disadvantages of each method from an objective perspective. Overall, biological methods have the greatest potential to degrade OTA. This review provides some ideas for searching for new strains and degrading enzymes.


Assuntos
Ocratoxinas , Ocratoxinas/toxicidade , Agricultura , Alimentos , Mutagênese
11.
Pestic Biochem Physiol ; 195: 105556, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666592

RESUMO

Azoxystrobin (AZO) is a broad-spectrum strobilurin fungicide widely used in agriculture. However, its use increases the possibility of co-occurrence with mycotoxins such as ochratoxin A (OTA), which poses a significant risk to human health. Therefore, it is imperative to prioritize the evaluation of the combined toxicity of these two compounds. To assess the combined effects of AZO and OTA, the response genes and phenotypes for AZO or OTA exposure were obtained by utilizing Comparative Toxicogenomics Database, and Database for Annotation, Visualization and Integrated Discovery was used for GO and KEGG pathway enrichment analysis. In addition, we provided in-vivo evidence that AZO and OTA, in isolation and combination, could disrupt a variety of biological processes, such as oxidative stress, inflammatory response, apoptosis and thyroid hormone regulation under environmentally relevant concentrations. Notably, our findings suggest that the combined exposure group exhibited greater toxicity, as evidenced by the expression of various markers associated with the aforementioned biological processes, compared to the individual exposure group, which presents potential targets for the underlying mechanisms of induced toxicity. This study provides a novel methodological approach for exploring the mechanism of combined toxicity of a fungicide and a mycotoxin, which can shed light for conducting risk assessment of foodborne toxins.


Assuntos
Fungicidas Industriais , Ocratoxinas , Humanos , Estrobilurinas , Fungicidas Industriais/toxicidade , Ocratoxinas/toxicidade
12.
Toxicology ; 497-498: 153630, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709162

RESUMO

Data from epidemiological and experimental studies have evidenced that some chemical contaminants in food elicit their harmful effects by targeting the central nervous system. Ochratoxin A is a foodborne mycotoxin produced by Aspergillus and Penicillium species. Research on neurotoxicity associated with ochratoxin A exposure has increased greatly in recent years. The present review accrued substantial evidence on the neurotoxicity associated with ochratoxin A exposure as well as discussed notable susceptible targets of noxious ochratoxin A at molecular, cellular and genetic levels. Specifically, the neurotoxic mechanisms associated with ochratoxin A exposure were unequivocally unraveled in vitro using human neuroblastoma SH-SY5Y cells, mouse hippocampal HT22 cells, human astrocyte (NHA-SV40LT) cells and microglia cells as well as in vivo using mammalian and non-mammalian models. Data from human biomonitoring studies on plasma ochratoxin A levels in patients with neurodegenerative diseases with some age- and sex-related responses were also highlighted. Moreover, the neurotherapeutic mechanisms of some naturally occurring bioactive compounds against ochratoxin A neurotoxicity are reviewed. Collectively, accumulated data from literature demonstrate that ochratoxin A is a neurotoxin with potential pathological involvement in neurological disorders. Cutting edge original translational research on the development of neurotherapeutics for neurotoxicity associated with foodborne toxicants including ochratoxin A is indispensable.


Assuntos
Micotoxinas , Neuroblastoma , Síndromes Neurotóxicas , Ocratoxinas , Humanos , Camundongos , Animais , Ocratoxinas/toxicidade , Micotoxinas/toxicidade , Síndromes Neurotóxicas/etiologia , Mamíferos
13.
Molecules ; 28(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764392

RESUMO

Ochratoxin A (OTA) is considered as the most toxic of the other ochratoxins synthesized by various fungal species belonging to the Aspergillus and Penicillium families. OTA commonly contaminates food and beverages, resulting in animal and human health issues. The toxicity of OTA is known to cause liver damage and is still being researched. However, current findings do not provide clear insights into the toxin mechanism of action. The current studies focusing on the use of potentially protective compounds against the effects of the toxin are insufficient as they are mainly conducted on animals. Further research is required to fill the existing gaps in both fields (namely the exact OTA molecular mechanism and the prevention of its toxicity in the human liver). This review article is a summary of the so far obtained results of studies focusing on the OTA hepatotoxicity, its mode of action, and the known approaches of liver cells protection, which may be the base for expanding other research in near future.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ocratoxinas , Animais , Humanos , Ocratoxinas/toxicidade , Bebidas , Alimentos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
14.
Mycotoxin Res ; 39(4): 393-403, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37466908

RESUMO

Despite a long history of research, the mode of action of the mycotoxin ochratoxin A (OTA) is still not clear. Based on our observation that OTA-exposed cells consume more glucose and produce more lactate than control cells, with this study, we want to suggest another possible mode of action of OTA, involving cellular metabolism and mitochondria. We exposed human proximal tubule cells (HK2 cells) to OTA and studied its influence on mitochondrial performance as well as on the expression of energy homeostasis-involved routing proteins (AMPK and TXNIP) and on glucose transporting and metabolizing proteins. OTA reduced the capacity of mitochondria to increase their oxygen consumption rate forcing the cells to switch to the ineffective anaerobic glycolysis which demands higher glucose availability. The higher glucose demand is met by augmented cellular glycogen degradation and increased glucose uptake capabilities by increasing glucose transporter expression. We conclude that OTA exposure leads to impaired mitochondria, which forces the cells to alter their metabolism in order to ensure energy supply. We suggest to consider a possible effect of OTA on metabolism and mitochondria and to have a closer look on OTA-induced changes in the metabolome as possible additional players in OTA toxicity.


Assuntos
Micotoxinas , Ocratoxinas , Humanos , Ocratoxinas/toxicidade , Micotoxinas/toxicidade , Homeostase , Glucose/metabolismo
15.
J Agric Food Chem ; 71(26): 10155-10168, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37344385

RESUMO

Contamination of foods and feeds with Ochratoxin A (OTA) is a global problem, and its detoxification is challenging. In this study, Bacillus velezensis IS-6 culture isolate supernatant degraded 1.5 g/mL OTA by 89% after 24 h of incubation at 37 °C, whereas viable cells and intra-cell extracts were less effective. The OTA degradation by B. velezensis IS-6 was an enzymatic process mediated by the culture supernatant. The degradation activity was optimal at 37 °C and pH 7.0, and Fe2+ and Cu2+ ions enhanced the OTA degradation. The LC-MS/MS analysis confirmed that structure of OTA was modified, resulting in the production of OTα that was less toxic than OTA. The transcriptomic analysis of B. velezensis IS-6 showed that 38 differentially expressed genes (DEGs) were significantly up-regulated, and 24 DEGs were down-regulated after treatment with OTA. A novel OTA degradation enzyme Nudix hydrolase Nh-9 was successfully cloned and characterized from the up-regulated genes. The recombinant Nh-9 enzyme was overexpressed in Escherichia coli BL21 and purified by affinity chromatography, exhibiting 68% degradation activity against 1.0 µg/mL OTA at 37 °C in 24 h. The degraded product by the Nh-9 enzyme was identified as the less toxic OTα by LC-MS/MS. According to the findings, it can be inferred that Nh-9 is the main OTA-degrading enzyme in B. velezensis IS-6. Furthermore, OTA may be co-degraded by Nh-9, carboxylesterase, signal peptidase, and other degrading agents that are yet to be discovered in this strain.


Assuntos
Ocratoxinas , Transcriptoma , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ocratoxinas/toxicidade
16.
J Appl Toxicol ; 43(10): 1533-1548, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37162024

RESUMO

Ochratoxin A (OTA) is a mycotoxin that causes renal carcinogenicity following the induction of karyomegaly in proximal tubular cells after repeated administration to rats. Here, we performed gene profiling regarding altered DNA methylation and gene expression in the renal tubules focusing on the mechanism of OTA-induced carcinogenesis. For this purpose, OTA or 3-chloro-1,2-propanediol (3-MCPD), a renal carcinogen not inducing karyomegaly, was administered to rats for 13 weeks, and DNA methylation array and RNA sequencing analyses were performed on proximal tubular cells. Genes for which OTA altered the methylation status and gene expression level, after excluding genes showing similar expression changes by 3-MCPD, were subjected to confirmation analysis of the transcript level by real-time reverse-transcription PCR. Gene Ontology (GO)-based functional annotation analysis of validated genes revealed a cluster of hypermethylated and downregulated genes enriched under the GO term "mitochondrion," such as those associated with metabolic reprogramming in carcinogenic process (Clpx, Mrpl54, Mrps34, and Slc25a23). GO terms enriched for hypomethylated and upregulated genes included "response to arsenic-containing substance," represented by Cdkn1a involved in cell cycle arrest, and "positive regulation of IL-17 production," represented by Osm potentiating cell proliferation promotion. Other genes that did not cluster under any GO term included Lrrc14 involved in NF-κB-mediated inflammation, Gen1 linked to DNA repair, Has1 related to chromosomal aberration, and Anxa3 involved in tumor development and progression. In conclusion, a variety of genes engaged in carcinogenic processes were obtained by epigenetic gene profiling in rat renal tubular cells specific to OTA treatment for 13 weeks.


Assuntos
Ocratoxinas , alfa-Cloridrina , Ratos , Animais , Metilação de DNA , alfa-Cloridrina/metabolismo , alfa-Cloridrina/farmacologia , Rim , Ocratoxinas/toxicidade , Ocratoxinas/metabolismo , Expressão Gênica , Carcinógenos/toxicidade
17.
Toxins (Basel) ; 15(4)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37104230

RESUMO

Ochratoxin A (OTA), as a common mycotoxin, has seriously harmful effects on agricultural products, livestock and humans. There are reports on the regulation of SakA in the MAPK pathway, which regulates the production of mycotoxins. However, the role of SakA in the regulation of Aspergillus westerdijkiae and OTA production is not clear. In this study, a SakA deletion mutant (ΔAwSakA) was constructed. The effects of different concentrations of D-sorbitol, NaCl, Congo red and H2O2 on the mycelia growth, conidia production and biosynthesis of OTA were investigated in A. westerdijkiae WT and ΔAwSakA. The results showed that 100 g/L NaCl and 3.6 M D-sorbitol significantly inhibited mycelium growth and that a concentration of 0.1% Congo red was sufficient to inhibit the mycelium growth. A reduction in mycelium development was observed in ΔAwSakA, especially in high concentrations of osmotic stress. A lack of AwSakA dramatically reduced OTA production by downregulating the expression of the biosynthetic genes otaA, otaY, otaB and otaD. However, otaC and the transcription factor otaR1 were slightly upregulated by 80 g/L NaCl and 2.4 M D-sorbitol, whereas they were downregulated by 0.1% Congo red and 2 mM H2O2. Furthermore, ΔAwSakA showed degenerative infection ability toward pears and grapes. These results suggest that AwSakA is involved in the regulation of fungal growth, OTA biosynthesis and the pathogenicity of A. westerdijkiae and could be influenced by specific environmental stresses.


Assuntos
Micotoxinas , Ocratoxinas , Humanos , Virulência , Cloreto de Sódio , Vermelho Congo , Peróxido de Hidrogênio , Ocratoxinas/toxicidade
18.
Chemosphere ; 326: 138429, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36933844

RESUMO

Despite the current efforts to identify the mixtures of chemical pollutants, they are often "binned" into their corresponding pollutant groups. Limited studies have investigated complex mixtures of chemical pollutants co-occurring across different groups. The combined toxic impacts of several substances become a critical consideration in toxicology because chemical combinations can exert a greater deleterious effect than the single components in the mixture. In the current work, we assessed the joint impacts of ochratoxin A and tricyclazole on the zebrafish (Danio rerio) embryos and explored their underlying signaling pathways. Ochratoxin A displayed higher toxicity than tricyclazole, with a 10-day LC50 of 0.16 mg L-1, whereas that for tricyclazole was 1.94 mg L-1. The combination of ochratoxin A and tricyclazole exhibited a synergistic impact on D. rerio. The activities of detoxification enzymes GST and CYP450, as well as apoptosis-associated enzyme caspase 3, were distinctly changed in most individual and mixture exposures comparing to the untreated group. Upon both individual and mixture exposures, more dramatic variations were detected in the expressions of nine genes, such as the apoptosis genes cas3 and bax, antioxidant gene mn-sod, immunosuppression gene il-1ß, and the endocrine system genes trα, dio1, trß, ugtlab, and crh, compared with the untreated group. These findings suggested that the simultaneous exposure to low doses of mycotoxins and pesticides in food commodities was more toxic than predicted from the individual chemicals. Considering the frequent co-occurrence of mycotoxins and pesticides in the diet, this synergy should be considered in future assessments.


Assuntos
Ocratoxinas , Praguicidas , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Larva , Praguicidas/toxicidade , Ocratoxinas/toxicidade , Ocratoxinas/metabolismo , Poluentes Químicos da Água/metabolismo , Embrião não Mamífero
19.
Toxicon ; 226: 107085, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36921906

RESUMO

Maize (Zea mays) is an important staple food crop for the majority of Ghanaians. Maize is mostly contaminated by fungal species and particularly mycotoxins. This work aimed to identify and quantify the incidence of fungal infection and exposure to Ochratoxin A (OTA) as well as the health risk characterization in different age populations due to maize consumption in the Volta region. Maize samples were plated on Dichloran Rose Bengal Chloramphenicol (DRBC) agar, and Oxytetracycline Glucose Yeast Extract (OGYE) agar. All media were prepared in accordance with the manufacturers' instructions. The plates were incubated at 28 ± 2 °C for 5-7 days. High-Performance Liquid Chromatography connected to a fluorescence detector (HPLC-FLD) was used to analyze the ochratoxin A (OTA) levels in maize. Cancer risk assessments were also conducted using models prescribed by the Joint FAO/WHO Expert Committee on Additives (JECFA). The maize samples collected from the Volta region contained fungal population between the range of 3.08-4.58 log10 CFU/g. Eight (8) genera were recorded belonging to Aspergillus, Trichoderma, Penicillium, Fusarium, Saccharomyces, Mucor, Rhodotorula and Rhizopus. The species diversity includes A. flavus, A. niger, T. harzianum, P. verrucosum, F. oxysporum, Yeast, F. verticillioides, Rhodotorulla sp, A. fumigatus, R. stolonifer, M. racemosus species. Additionally, the ochratoxins level contained in the samples were very noteworthy and ranged from 1.22 to 28.17 µg/kg. Cancer risk assessments of OTA produced outcomes also ranged between 2.15 and 524.54 ng/kg bw/day, 0.03-8.31, 0.0323, and 0.07-16.94 for cases/100,000 person/yr for Estimated Daily Intake (EDI), Margin of Exposure (MOE), Average Potency, and Cancer Risks respectively for all age categories investigated. There was very high mycoflora load on the maize sampled from the Volta region, likewise the range of mycotoxins present in the maize grains, suggesting the potential to pose some adverse health effects with the populace of the Volta region.


Assuntos
Micotoxinas , Neoplasias , Ocratoxinas , Humanos , Ocratoxinas/toxicidade , Ocratoxinas/análise , Zea mays/química , Zea mays/microbiologia , Gana , Ágar , Micotoxinas/análise , Contaminação de Alimentos/análise
20.
J Food Prot ; 86(5): 100082, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997025

RESUMO

Food safety is a top priority for the protection of infants and young children. Ochratoxin A (OTA) is an emerging concern due to its high toxicity and occurrence in a wide range of agricultural crops and their derived food products including those foods and snacks destined for infants and young children. OTA is considered as a possible human carcinogen, and its main target organ is the kidney. The objective of this study was to investigate the protective effect of α-tocopherol against oxidative stress induced by OTA using human proximal tubule epithelial cells (HK-2). OTA showed dose-dependent increase in cytotoxicity (IC50 = 161 nM, p < 0.05) at 48 h, while treatment up to 2 mM α-tocopherol did not change cell viability. Levels of the reduced form of glutathione (GSH) were decreased with α-tocopherol treatment, although the ratio of the oxidative form (GSSG) to GSH remained the same. Among several genes associated with oxidative stress, expression of superoxide dismutase 1 (SOD1), catalase (CAT), glutathione reductase (GSR), and kidney injury molecule-1 (KIM-1) were significantly up-regulated by OTA treatment. CAT and GSR showed decreased expression at 0.5-2 mM α-tocopherol and OTA at IC50 value, KIM-1 was decreased at 0.5 mM α-tocopherol and OTA at IC50 value, and nuclear factor erythroid 2-related factor 2 (Nrf2) was decreased at 0.5-1 mM α-tocopherol and OTA at IC50 value. In addition, the levels of malondialdehyde (MDA) were increased significantly by OTA while significantly decreased by α-tocopherol. The results show that α-tocopherol may alleviate potential OTA-induced renal damage and oxidative stress through reducing cytotoxicity and enhancing the antioxidant defense systems.


Assuntos
Ocratoxinas , alfa-Tocoferol , Criança , Humanos , Pré-Escolar , alfa-Tocoferol/farmacologia , alfa-Tocoferol/metabolismo , Ocratoxinas/toxicidade , Rim/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Glutationa/farmacologia , Linhagem Celular , Células Epiteliais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...